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Ratio regression type estimators of the population mean for
missing data in sample surveys

Prachi Garg!, Namita Srivastava’, Manoj Kumar Srivastava®

Abstract

In this article, new ratio regression type estimators with imputation have been proposed as
means to overcome the problem of missing data relating to a studied variable in a sample
survey. It has been shown that the suggested estimators are more efficient than the mean
method of imputation, the ratio method of imputation, the regression method of
imputation, and the estimators given by Singh and Horn (2000), Singh and Deo (2003),
Singh (2009), Diana and Perri (2010) and Gira (2015). The biases and their mean square
errors of the suggested estimators are derived. A comparative study is conducted using real
and simulated data. The results are found to be encouraging showing improvement of all the
methods discussed in this article.

Key words: imputation methods, Bias, Mean square error (MSE), Efficiency, Ratio-
Regression type estimators.

1. Introduction

Missing data or missing values occur when no data value is stored for a variable in
an observation. Even in a well-designed and controlled study, missing data occurs in
almost all research. Missing data is commonly described as major issue in most
scientific research domains that may originate from such a mishandling sample,
measurement error, non-response or deleted aberrant value. To get precise estimates of
population parameters we seek information on every selected unit of the sample.
Imputation means replacing a missing value with other value based on a reasonable
estimate. Information on the related auxiliary variable is generally used to recreate the
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missing values for completing datasets. Incomplete data is usually categorized into
three different response mechanisms: Missing Completely At Random (MCAR);
Missing At Random (MAR); and Missing Not At Random (MNAR or NMAR) (Little
& Rubin,2002). In Missing Completely at Random (MCAR) missing data is randomly
distributed across the variable and unrelated to other variables. In Missing at Random
(MAR) the missing observations are not randomly distributed but they are accounted
for by other observed variables. In Missing Not at Random (MNAR) category, the
missing data systematically differ from the observed values. In the present article we are
assuming MCAR response mechanism of missing data.

Auxiliary information is important for a survey practitioner as it is utilized to
improve the performance of the methods in finite sample survey. At the estimation
stage the auxiliary information is utilized for suggesting imputation methods which
results in ratio, product and regression estimators. Many imputation methods have
been proposed utilizing the auxiliary information. Several researchers (Lee, Rancourt,
and Sarndal 1994,1995; Singh and Horn 2000; Singh et. al; Diana and Perri 2010;
Pandey, Thakur, and Yadav 2015; Singh et. al. 2016; Bhushan and Pandey 2018; Prasad
2017, 2018, 2019; Singh and Khalid 2019; K Chodjuntug and N Lawson (2022)[4]; K
Chodjuntug and N Lawson (2022)[5]; N Lawson (2023) [12]; N Lawson (2023) [13]; N
Thongsak and N Lawson (2023) [14] etc.) among others assumed MCAR mechanism
to develop several imputation methods and resultant estimators to estimate population
mean in the case of missing data problems. The imputation methods proposed by Singh
and Horn (2000), Singh and Deo (2003), Singh (2009), Diana and Perri (2010), and Gira
(2015) result in different estimators, but they all lead to the same Mean Squared Error
(MSE) formula, which are same as regression method of imputation. Therefore, in this
paper we compared and simulated our estimator with the mean, ratio and regression
estimators after proposing the new imputation strategy and the resulting estimator. The
proposed estimators come out to be more efficient than the usual mean, ratio and
regression (Diana & Perri’s regression) method for handling missing observations to
estimate the population mean.

This article proposes three ratio-regression type imputation methods to inadequate
the annoyance outcome of nonresponse in survey sampling. The resulting classes of
point estimators that can be used to estimate the population mean have been discussed
in detail. The bias and Mean Square Error (MSE) properties of the proposed estimators
have been derived. An empirical study was conducted to assess their performance
in comparison with existing estimators, and the findings have been presented. These
are designed as follows.. In Section 2,the sample structure and notations are considered
and in Section 3, we have reviewed several imputation techniques of finite population
mean under non-response that are available in the literature suggested by various
authors. In Section 4, construction of the suggested alternative method of imputation
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is carried out and the bias mean square error equations for this estimator is obtained.
In Section 5, we have proposed a new method of imputation and obtained their bias
mean square error equations for this estimator. In Section 6, we have conducted
efficiency comparison of alternative method of imputation. In Section 7, we do
computational study by using real and artificial populations, respectively. Section 8
summaries the main findings and conclusions.

2. Sample Structure and Notations:

Consider a finite population U = {U;, U, ....., Uy} of size N for which a random
sample s = {uq,u,,.....,uy} of size n under simple random sampling without
replacement scheme is drawn to estimate the population mean Y = % N v of the
study variable y. Let y; and x; be the values of the study variable y and auxiliary variable
x , respectively for the i unit of a finite population of size N. The information on x
can be available on the entire population through knowledge of x;, V i€U, or its
population mean X = %Z’;’:l X;. Let s be a simple random sample without replacement
(SRSWOR) of sizen (n < N) drawn from U to estimate Y. Let r be the number of
responding units out of sampled n units. Let the set of responding units be denoted by
R and that of non-responding (n-r) units be denoted by R¢. For every unit, i € R the
value y; is observed. However, for the units, ieR¢, the y; values are missing and
imputed values are derived. Imputation is performed by employing the auxiliary
variable x where values are believed to be known for each sampled unit ies.

The structure of the general method of imputation in the case of complete dataset

under nonresponse is defined as:

_{yi if ieR
Y=, if ieR°

where 9; is the imputed value for the i® non-responding unit. Using the above data,
we get the following form of the general point estimator of the population mean (Y)

_ 1 1 1 o
Ys = ~Xiesy Vi =  [Zier Vi + Liere ¥il = ~[Eier Vi + Liere Jil-
Here, y; takes a different value for a different imputation method.

The following notations have been adopted for further use:

X,Y : The population mean of the auxiliary variable x and study variable y
respectively,

¥r: Sample mean of responding units,

X,: Sample mean of all units,

X,: Sample mean of responding units,

s
Pyx =ﬁ: The correlation coefficient between the variables y and x,
yOx
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= L N (yi — V)(x; — X): The covariance between y and x,

yx T nN-—
S = L N .(yi — V)2: The population mean square of y,
St = ﬁ N ,(x; — X)? : The population mean square of x,

Cy- S_y & C,— X: The coefficients of variation of y and x, respectively,
v

we define,

}_7r=}7(1+50), JErz)?(l"i'é‘o)' fn=)?(1+770)

using the above notation, we have

E(g,) = E(8,) =E(m,) =0

and,

5) = (———) C3, E(65) = (%—%) C2, E(g,6,) = (— )nyC Cy,
o> = (5 —3) CEEG.Mo) = (5 - %) CEE(EM0) = (5= 7) PryCaCy.

3. Review of Some existing estimators:

In this section, we discuss some of the classical and existing imputation methods
for estimating the population mean in sample surveys.

3.1. Mean method of imputation:

In the mean method of imputation the form of data by Lee, Rancourt and Sarndal
(1994) is treated as
Vi if ieR

yi,m = {377” lf ieR¢ (31)
The mean estimator under the new data (3.1) is given by
_ 1 _
m =~ LierYi = Yr (3.2)
The variance of the response sample mean ,, is given by
_ _ 1 1N\ o
V(i) = V() = (;-3)7%¢3 (3.3)

3.2. Ratio method of imputation:

The ratio method of imputation, based on information from the auxiliary variable
x, was proposed by Lee, Rancourt, and Sarndal (1994). Under this method, the imputed
data are adjusted using the known relationship between the study variable and the
auxiliary variable.
Vi if ieR
Yir = {Bxi if ieR° (3.4)
YieRrYi

where b = .
ieRXi
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The ratio estimator in the case of imputation method (3.4), is defined as
_ (% _
tp = Yr (f_j) = Yrar (3.5)
The bias and mean square error of the estimator t; are obtained under MCAR
response mechanism up to the first order approximation, and are given by

1 1\ g
B(tg) = (; - ;) Y Cr(Cx — pr) (3.6)
_ _ 1 1\ g
and MSE (Frar) =V(5) + (3 =2) V2Co(Cy — 2 pCy) (37)
The ratio method of imputation is better to choose over the mean method of
imputation whenever (pC,,/C,)>1/ 2.
3.3. Regression method of imputation;

In this method, the data after imputation becomes
Vi if ieR

YiREG = {a + by, if  ieR® (3.8)
where, a = 3y, — by, %, and by, = Ssy—z"
The point estimator of population mean Y
YR = Yr T byx(fn - X) (3.9)

The bias and mean square error of the estimator Yz are obtained under MCAR
response mechanism up to the first order approximation, and are given by

5 — PyxCy (1 1) (Hs00 _ Ha1o
B(YREG) - CxX (T n)Y(ﬂzoo li110) (3.10)

where, gy = Zliv=1(xi - X)*(y; =P (z - 2)°
M(Free) = (% - %) Sy + (

1 1
= —2)S2pE (3.11)

r

3.4. Singh and Horn (2000) Estimator

Singh and Horn (2000) introduced this method, the data after imputation becomes

_ {(“n/T)Yi +(1—a)bx; if ieR

B 1- a)Exi if ieR° (3.12)

R

The point estimator of population mean is given as
_ - _ %
Yeomp = [O(Yr + (1 - a)Yr )—(_r] (3-13)
where @ is an appropriate constant with optimum value a* =1 — p,,, (%) The bias

of the estimator ¥y, is given by

_ 1 1\g
B(Ycomp) = (1—a) (; - Z) Y Cx(Cx = Pyx Cy) (3.14)
using a” we get the minimum MSE of ynp, as
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— — 1 N\
Mmin(YCOMP) = MSE(.VRAT) - (; - ;) Yz(Cx ~ Pyx Cy) 2 (3-15)

3.5. Singh and Deo (2003) Estimator:

Singh and Deo (2003), using power transformation, this method gives the following
form of the data after imputation

Vi if ieR
Vi=1- [ £ \* ] x; , . e (3.16)
yr In (fr) r S if ieR
The resultant estimator of the population mean is given as
_ _ (%\%
Voo = 9 (32) (3.17)
c
where a is a suitably chosen constant and the optimum value a is a*=p,, (C—Z)

The bias of the estimator (Ysp) obtained by Singh and Deo is given by

= 1_ 1) 5 (BEB-D
B(ysp) = (; - ;) Y (T C)% ~ Pyx Cny) (3.18)
using optimum value a*, the minimum MSE of g is given
o\ 2
— _ 1 1 Syx Y
MSEpin (sp) = MSEGrar) — (5 —7)S2 (%~ ) (3.19)

3.6. Singh (2009) Estimator:

This method of imputation is an alternative technique to estimate population mean
Y in the presence of non-response. The study variate after imputation takes the
following form

Vi if ieR
Vi =1~ [(-1)Ep+ar(®,—%,) x; . . e (3.20)
T axr+ (1-a)x, ] Yierc Xi lf iR
The point estimator of population mean as following
Vsingh = — (3.21)

ax,y+ (1-a)xy,
where a is an appropriate constant with optimum value a* =p,,

The bias of the estimator (¥gingp) is given as

B(¥singn) =Y [(% - %) Pyx CyCx + a? (l - %) 2+ (1—a)? (% - %) i —

-
O I
=) (Pyx CyCx + 2)] (3.22)
using optimum value of a is a”, the minimum MSE of ¥g;4p, is given
)
MSEmin(Fsingh) = MSEGrar) — (7 - =) 8% (% —) (3.23)

n
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3.7. Diana and Perri (2010) Estimators

Diana and Perri (2010) propounded three regression-type imputation methods for
missing data as

ny; 7 ; .
—+ b(X— x; R
Yi,pp1 ={ ro_ ( %) g (3.24)
b(X— x;) if ieR°
L_p 2 f QeR
Vippr =1 " o T (3.25)
S G if  ieR¢ '
n-r
=X—b 2 if  ieR
\DP3 = . (3.26)
Yiors = 2 if ieR
The subsequent estimators under the imputation methods are respectively, given as
Ypp1 = Y + b(_X — Xy) (3.27)
Yop2 = Yr + b(X—X;) (3.28)
Yop3 = Yr + by — %) (3.29)
and
_ 1 1 1 1
MSE(¥pp1) = 53% [(z - ﬁ) 1 - Pyx ) 24 (; — ;)] (3.30)
_ 1 1
MSE(ppz) =52 (3 =) (1 = pyx) 2 (3.31)
_ 11 1 1
MSE(Jpp3) = Sy [(; - ;) + (; - ;) (1 — pyx) 2] (3.32)

3.8. Gira (2015) Estimator

Gira (2015) proposed a ratio type imputation procedure where the study variate
after imputation becomes
Vi if ieR
e A C) I o

a—xn/) 1 Yiepexi

where « is a suitably chosen constant, such that the MSE of the resultant estimator is
minimum. Note that if @ = 0 then Vgira = Vratio- The resultant estimator is obtained

as
Voira = Fr g (3.34)
The bias of the above estimator is
_ XY (1 1
B(¥6ira) = — P (; - ;) Pyx CyCy (3.35)

Using the optimum value of a = )?{Cx(pyx Cy)_1 — 1} and the optimum MSE
of Ygirq as follows.
MFgira) = V) — (= — =) Y2C2p2 (3.36)
YGira Ym n ypyx .

r
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4. An Alternative Method of Imputation

The estimators rely on three different ratio-regression type methods of imputation
as follows.

Case I: Auxiliary information on X is completely available, i.e., X is known and
corresponding estimates X,, are used in the imputation technique

v if ieR
I N
Yii =)W [{2_(%) }+,81()?—fn)—r] if ieR¢

n—r
The resultant estimator of population mean Y is given as
N
— — xn 5 d —
Y kB1 = Yr {2 - (7) } + (X — %) (4.1)

Case II: Auxiliary information on X is completely available i.e., X is known and
corresponding estimates X, are used in the imputation technique.

y; if ieR
R _T _T k = _ . .
Viz % [{2 — (x7) } +p.X—-x)— r] if ieR°

The resultant estimator of population mean Y is given as
N _
Ve = 2 - (%) }+ B X -2 (12)

Case I1I: Auxiliary information on X is not available at population level, i.e., X is not
known and we use corresponding estimates X, , X, is used in the imputation technique.

y if  ieR
_ — =k
Yo =) 1 [{2 - (%) } + By (o — %) — r] if  ieR°

The resultant estimator of population mean ¥ is given as

YkB3 = Yr {2 - (% )k} + 1 (% — X1) (4.3)

n

Therefore, the expression of Bias and Mean Squared Error (MSE) of proposed
estimator (¥ gpi,(i=1,283) discussed as follows.

Theorem (4.1): The bias of the proposed ratio regression type estimators ¥y, i =
1,2 and 3 is given by:
e > k c
Bias (Jis:) = VfiCE 5 |1~ k = 204y 2] (44)

PxySy—B1Sx
RS,

where k =
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and f; = fu, [ = frs f3 = frn-
Proof : Proof is given in Appendix-1.

Theorem (4.2): The minimum mean square error of the proposed estimators Tkp,,
i =1,2,3 is given by

MSE (Tgp:) = [fr53% +fi (S’%(kR +B1)% = 2pxy Sy Sy (kR + ﬂl))]

i=123..... (4.5)
For the optimum value k given by
k= pxySy — B1Sx
RS,
where,

and

fi=s
P17 s,

h=G-Dh=(-) & = (-2

The minimum MSE of the proposed estimator is given by

Min MSE(¥g;) = S5 [fr —fi* pxyz]'

Proof : Proof is given in Appendix-1.

il =i

5. A New Method of Imputation

The estimators rely on three different ratio-regression type methods of imputation
as follows.

Case I: Auxiliary information on X is completely available, i.e., X is known and
corresponding estimates X, are used in the imputation technique.

(Vi if ieR
L=4 1 Xn \* -
Y {\E “ﬂym {2 - (7") }] +/ X —%) — P 7 if  ieR®
The resultant estimator of population mean Y is given as
_ _ % \K = _
Ykn1 = [Yﬂ’r {2 - (7) }] + B (X — %) (5.1)

Case II: Auxiliary information on X is completely available i.e., X is known and
corresponding estimates X,. are used in the imputation technique.
Vi if ieR
,=1 1 % \* =
Yiz TT' [n)ﬁ}_’r {2 - (%) } + B X - fr) = Yr I‘] if ieR®

n
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The resultant estimator of population mean Y is given as

Yrnz2 = [Vﬂ_’r {2 - (% )k}] + B, (X — %) (5.2)

Case III: Auxiliary information on X is not available at the population level, i.e., X is
not known and we use corresponding estimates X, , X, in the imputation technique.

Yi if ieR
yiz =1 1 |, (fr>"+ % —%)—3 o ieRe
n—r ny1yr X, B1(Xn — X Y7 lf le
The resultant estimator of population mean Y is given as
: \K
Ykn3 = [Vﬂ_’r {2 - (zT:) }] + B1(%n — %) (5.3)

Therefore, under the above situations, the properties of imputation methods
discussed are as follow.

Theorem (5.1): The bias of the proposed ratio regression type estimators ygy;, i =
1,2 and 3 is given by:
; 5 (k 1)
Bias (Fw) = [0 — 1) = kfi {€F - “52 2 (54)

PxySy—P1Sx
RSy

and fi = fo, f2 = fro f3 = frn

Proof: Proof is given in Appendix-2.

where k =

Theorem (5.2): The minimum mean square error of the proposed ratio regression type
estimators ygy; i = 1,2 and 3 is given by

MSE (¥xni) = Y2(y2A; — 2y1B; + C)) i=123..... (5.5)

For the optimum value k given by

k= PxySy — B1Sx
RSX
where, A; = 1+ f,C] + f;(kCF — 4kpxy )
) k(k—1) )
B; =1 — fi(kpyxyCyC,y kﬁl Ck +Bi3 pxyC Cy Tcx)

X2
=1 +B1 flC2

_Bi
and Yiopt = a.

The minimum MSE of the proposed estimator is given by

. _ -2 B}
Min MSE(yKNl) =Y Ci _A_ .

i

Proof: Proof is given in Appendix-2.
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6. Efficiency Comparison

The following conditions are derived for the theoretical comparison of the Mean
Squared Error (MSE) of the proposed estimator with other existing estimators.

Strartegy I:
V() — MSE(Fkp1) = (+—=)p2,S2=0
) (YkB1) 7 N/ Pxydy =
) _ 2 01 1y, .,
MSE(Frea) — MSEGsr) = (= === 1) P35 = 0

MSE(ypp1) — MSE(¥kp1) = 01 .
MSE(Foe) = MSEGics:) = (- =) pdyS3 2 0
v e 2 1 1
MSE (¥pps) — MSE(Vkp1) = ( _____ ) 02,52 2 0

N
_ i} 2y,
MSE (Faira) — MSEGken) = (=== 1) pyS5 2 0
Strategy II:
V() — MSE(kez) = (+—=)p2,S2>0
D) (YkB2) T TN/ Pxydy =

11

MSE (Frec) — MSE(Fka2) = (H _ N) 02,52 > 0
y v LA prp

MSE (§pp1) — MSE(kp2) = <? _ H) 02,5220

MSE(¥pp2) — MSE(Yka2) =0 L

MSE(Fops) ~ MSEGiks2) = (1 =) P35 = 0

_ _ 11
MSEFaira) — MSEGke) = (=) %55 2 0
Strategy I11:
V(#,) — MSE(¥kps) = (= —=)p2,S2=0
(Yr) (YKBS) r pxy y =

n

MSE (Vrec) — MSE(Ykp3) = 0
MSEFop1) — MSETxes) =

MSE(For2) — MSEGss) = (5= 1)

MSE(¥pp3) — MSE(¥kp3) = 0
MSE(¥ira) — MSE(Jkps) = 0

= | =

Z| -
=y
N——"
XN
<

Comparing the proposed estimators, even if they involve different source of
information, after simple algebra we note that:

) _ 11
MSEir) ~ MSEGicsa) = (=) oS5 = 0
_ B 1 1y, .,
MSE(¥xp3) — MSE(¥ks2) = (H_ N) PxySy = 0

_ _ 1 1 2 2 w2
MSEis1) ~ MSEGicss) = (£ +5 = ) P35 = 0

This means that ¥, is always more efficient than both yxp, and ¥gp3, whereas
Vkps performs better than yyp, if the condition r < % is satisfied. The results are
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valuable because they highlight the role of the auxiliary information in improving the
estimates and afford sampling practitioners a useful indication on a profitable collec-
tion of auxiliary information in the case of missing data. The choice among competing
estimators can be certainly facilitated by awareness of the information at hand.

7. Computational Study

We have divided the computations into two categories, namely, with real data and
artifically generated data.

7.1. Empirical study using real data

In this section, an empirical study is performed in the presence of auxiliary variable
where the performance of the proposed methods of imputation is compared with
competing methods based on MSE and PRE. This study is carried out on six real data
sets. We have computed and reported MSEs and percentage relative efficiency (PREs)
of the proposed imputation methods with respect to the conventional methods to
compare the proposed imputation methods with that of the existing imputation
method that utilizes auxiliary information.
= —Mlﬁgi rB)l) x100 and PREFyi, ) = —MAZ;L:}% :V)L)

Six different real data sets have been considered in the present empirical study. Data
set 1 is taken from, Kadilar & Cingi (2008) with details on y as the level of apple
production, and x as the number of apple trees.Data set 2 is taken from Diana & Perri
(2010) with information on the Survey of Households Income and Wealth conducted
by the Bank of Italy for the year 2002, y as the household’s net disposable income, x as
the number of household income earners. Data set 3 is taken from Source: [7] Page 228.
The source of data set 4 is Singh (2009). The data set 5 is taken from Srivastava et. al.
(1989) pp. 3922): y of weight of children, x as the skull circumference of children. Data
set 6 is taken from ICMR, Department of Pediatrics, BHU, during 1983-84 of school
children with study variable y as height (in kg) of the children, x, variable related to
weight. The required values of the parameters for all six data sets are given in table 1.

PRE (Jai, ) X 100

Table 1: Population Parameters of Six Different Real Population.

Parameter | Population1 | Population2 | Population3 | Population4 | Population5 | Population 6
N 19 8011 80 3055 82 95

n 10 400 20 611 43 35

r 8 250 16 520 25 10

Y 575 28229.43 51.8264 308582.4 11.90 115.9526

X 13573.68 1.69 2.8513 56.5 39.80 19.4968

Sy 858.36 22216.56 18.3569 425312.8 0.5792685 5.966921

Sx 12945.38 0.78 2.7041 72.3 0.8581212 3.27346
Pxy 0.88 0.46 0.9150 0.677 0.009 0.713
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These population have varying amount of correlation between study variate(y) and

auxiliary variate(x) as shown in the table 1.

Table 2: Mean Square Errors of the Existing and Suggested Estimators

Case I
Estimator | Population 1 | Population 2 | Population 3 | Population 4 | Population 5 Pop uéation
Yr 53319.74 191268.93 16.85 | 288655815.71 0.00932998 3.185634
Yrar1 47051.53 1683371.53 76.31 | 290511133.40 0.01066795 3.471515
YRrEGL 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
Vsu1 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
Ysp1 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
VsincH1 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
Ypp1 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
Yeira1 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
YkB1(proposed) 45934.86 1664625.61 14.17 | 238539244.96 0.00929992 3.095766
YKN1(proposed) 28448.79 1209049.49 8.84 | 190771840.36 0.00890512 2.949472

Case II
Vr 53319.74 191268.93 16.85 | 288655815.71 0.009329982 3.185634
Yrar2 43743.31 1538549.33 96.14 | 290916984.15 0.01269343 4.603127
YrEG2 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
Vsu2 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
Vsp2 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
VsinGH2 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
Ypp2 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
Yeiraz 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
YkB2(proposed) 42037.28 1507964.74 13.28 | 227576245.10 0.00925441 2.74004
Yin2(proposed) 18811.33 76727891 6.20 | 169535367.50 0.008266157 2.017615

Case III
3, 53319.74 | 191268.93 16.85 | 28865581571 | 0.009329982 | 3.185634
Frars 50011.52 | 176786772 36.67 | 28906166645 |  0.01135546 | 4.317246
YRrEG3 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
Vsus 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
YVsp3 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
Ysinu3 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
Ypp3 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
YVeiras 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
YkB3(proposed) 49422.17 1756029.05 15.96 | 277692815.85 0.009284472 2.829908
Fina(oroposed) 368263 | 1466695.66 1411 | 266571886.52 | 0.008688242 | 2.253037
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Table 3: Percentage Relative Efficiency of the Considered Estimators under Six Different populations

Casel
Estimator Population 1 | Population 2 |Population 3 |Population 4 |Population 5 |Population 6
Vr 100 100 100 100 100 100
Yrar1 152.7992 113.6226 22.07836 99.36136 87.45805 91.76495
YRrEG1 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
Vsu1 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
Vsp1 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
VsinGH1 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
Ypp1 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
Yeira1 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
YkB1(proposed) 154.1536 114.9021 118.8637 121.0098 100.3233 102.9029
Yin1(proposed) 216.947 158.1978 190.683 151.3094 104.7709 108.0069

Case 11
Vr 100 100 100 100 100 100
YREG2 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
Vsuz 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
Vsp2 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
VsinGH2 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
Ypp2 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
Veiraz 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
YkB2(proposed) 215.8442 126.8392 126.8391 126.8392 100.8166 112.8697
Yin2(proposed) 435.1715 249.2822 271.9538 170.2629 112.8697 157.8911

Case I11
Vr 100 100 100 100 100 100
Yrar3 122.305 108.1919 45.94658 99.8596 82.16294 73.78856
YVREG3 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
Vsuz 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
Vsp3 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
VsinGH3 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
Ypp3 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
Y6iraz 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
YkB3roposed) 122.76 108.9213 105.5855 103.9479 100.4902 112.5702
Yin3(proposed) 152.4202 130.4081 119.4088 108.2844 107.3863 141.3929
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7.2. Artificial population

The artificial population has been generated as described below

Populationl. A population of size N = 500 with one study variable y and one
auxiliary variable x is generated from the bivariate normal distribution where study
variable y is correlated with auxiliary variables with various amount of p,, =
0.6,0.7,0.8 and 0.9. The variables (y, x) are generated using MVNORM package in R
software. A sample of size n = 50 is drawn from the population, with the number of
responding units assumed to be r = 30.

Population 2. An artificial population is generated of size N = 200 which involves
one study variable y and auxiliary variable x. Study variable y is correlated with
auxiliary variables with various amount of p,, = 0.6,0.7,0.8 and 0.9 The variables
(y,x) is generated using MVNORM package in R software. From this population we
draw sample of sizen = 26, responding units arer = 21.

The percentage relative efficiencies (PRE) of the proposed estimators are computed
through 50,000 repeated samples of size n as per imputation technique. In which we (i)
draw a random sample of size n from population size N, (ii) from each selected sample
(n—r) units are dropped randomly, and (iii) the estimators and their MSE’s are
calculated for each sample and then averaged over all 50,000 samples .

The mean square error and percent relative efficiencies are given by
50000

MSE(T}) = ﬁ LZ (Tis)-7)° j=0,1,23
PRE(T)) = MSE(o) 149 =123
7 MSE(T;) e
based on 50,000 repeated samples.

Table 4: Mean square error and percentage relative efficiency based on

Population 1 (Artificially generated normal population)

(N=500, n=50, r=30)

Correlation 0.9 0.8 0.7 0.6

Estimator MSE PRE MSE PRE MSE PRE MSE PRE

Mean per
unit(y,) 3.1962 100 | 3.0434 100 | 3.23365 100 | 2.62266 100
Ratio method
(Yrar) 2.3856 133978 | 24749 | 122,973 | 2.83633 114.008 | 2.34778 | 111.7081
Regression
Method
(Frec) 2.2519 | 141.9321 24259 | 125455 | 2.85815 | 113.138 | 2.35706 | 111.2686

Proposed
imputation
Fyni) 2.1520 | 148.5223 | 2.2456 | 135.529 | 2.44280 | 132.375 | 2.13541 | 122.8176
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Table 4: Mean square error and percentage relative efficiency based on (cont.)

Population 2 (Artificially generated normal population)

(N=200, n=26, r=21)

Correlation 0.9 0.8 0.7 0.6

Estimator MSE PRE MSE PRE MSE PRE MSE PRE

Mean per
unit(y,.) 4.7080 100 4.5813 100 4.5712 100 4.0428 100
Ratio method
(Vrar) 4.1007 114.810 4.1094 111.484 4.1587 | 109.9177 3.8485 105.049

Regression
Method
(Vrec) 4.0259 116.943 4.0721 | 112.504 4.1552 | 110.0103 3.8514 | 104.972

Proposed
imputation
Feeni) 3.7094 126.921 3.5807 | 127.944 3.7578 | 121.6439 3.4201 | 118.208

8. Interpretations of the Computational Results

In this article, it is clear that MSE of the proposed alternative estimator is more
efficient than the mean estimator. In addition, the proposed estimator is always more
efficient than the usual ratio estimator. We note that the proposed method is free from
the assumptions of a model for the ratio method of imputation. In addition, MSE is
similar to the other mentioned estimators MSE (Vsy) = MSE (¥sp) = MSE (Ysingn) =
MSE#¥ppi) = MSE(¥¢1ra) = MSE( ¥kpi)- A new method of imputation is introduced
that remains more efficient than conventional and existing imputation methods in the
presence of auxiliary variables. The following interpretations are made based on
empirical results summarized in Table 3.

1. We introduce an alternative method of imputation and the resultant estimator
in the presence of non-response. The performance of the proposed estimator is
justified theoretically and numerically. Table 2 & 3 expressed that the relative
efficiency of the proposed estimator (Yxp1, Yxp2 and Ygpg3) performs better than
the mean and the ratio estimators and is equivalent to other mentioned estimators.

2. For all the populations 1 to 6, Table 2 & 3 exhibit the superiority of the proposed
imputation method (¥gn1, Y2 and Ygy3) over the mean and ratio type
imputation method. Also, the proposed method of imputation
(¥kn1, Yrnz and Ygy3) is superior to the Diana and Perri regression type
imputation method and the proposed alternative method (¥ p1, Yy2 and ¥y3) of
imputation.

3. The proposed new imputation method (Ygn1,¥Ygnz and Ygy3), in all the
populations 1 to 6, as shown in Table 2 & 3, has achieved considerable gain
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in performance over the conventional imputation method for all the three cases,
namely Vgyq is considerably better than ysy (1), ¥sp(1), and ¥pp (D), in case I
Similarly, gy, is considerably superior to  yguy(II), ¥sp(1I), and ypp(ID),
imputation methods in case II and ygy3 is considerably superior to Vg (I1D),
Vep (I11), and ypp(I1I), in case III.

4. Itisimportant to note that Table 2 & 3 exhibit that the proposed imputation method
(¥kn1, Yknz and Ygn3) when applied to six real data sets, and compared with
conventional and recent imputation methods, attains considerable gain in efficiency
over competing for imputation methods for the case II, and gives better results over
other cases, namely, case I and case III.

5. This empirical study confirms the superiority of the proposed imputation method
over Diana & Perri’s (2010) imputation method and other landmark imputation
methods that use auxiliary information.

It can be noted that the proposed method of imputation (Ygn1, Ykn2 and Ygn3)
is easy to use and rewarding in terms of efficiency and deals with the problem of non-
response. Survey practitioners can use the proposed imputation method to deal with
the problem of nonresponse and get a high gain in efficiency when one has access to
auxiliary information.
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Appendix-1

Proof: proof of theorem 4.1(Bias of the proposed estimator). The line of proof here is
worked out for the estimator defined under case 1, The estimator Yy, can be written
be as follows.

Vvt =Y (1 +&)[2 = (1 +1,)%] = B Xn,
=1 +e)[2— (1 +Kn, + 552 52 + )] - B,
=V(1+2,) (1- Kno == 52 + ) = B X, (4)
=7 (142, — K7, Ksono K(KZ D2 = B, +0(d))
Neglecting the higher order of approximation, the bias
B(kn1) = E(kna — 1)
= VE (& — Kno — Keotto — 5202 =g 2n,)  (B)

Taking the expectations of (B), we get (4.4) for i = 1, which prove theorem (4.1).

The derivation of other estimators y,y; (i = 2 & 3) can be carried out in a similar
way.

Proof: proof of theorem 4.2

The MSE of ¥3;; can be found up to the first order of approximation by rewriting
as follow:

MSE (Jkn1) = E(kn1 —¥)? 2
K(K-1)
_YZE[EO—KTIO Keor]o— — 16 Blyno]
X
= V2B [e3 + K203 + B2 3 — 2Kegn, + 2KB, 31 — 2615 €
[(E= )52 4 (2= L) (SEKR + B1)? = 2pxySxSy (KR + B1)
_[( N)Sy ( N)( xy ' )] (O

r n

Y
where, R ==
X

Differentiating equation (C) with respect to K and equating to zero, we get

nyR—Sxﬂlx = K (optimum)

then substitute the value of optimum K in equation (4.8), thus the resulting minimum

K =

mean square error of y,;, is given by

Min MSE(¥kn1) = SE[fr — fu * Pry?]
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Appendix-2

Proof: Proof of theorem 5.1

The estimator Y, can be written be as follows.

Ykp1 = V1Y (1 +&)[2 — (1 +1n,)"] - (,31)??0
= K(K-1 =
=1V (1+ &) [2 = (1 + Ko + 552 0% + )] = puXn,
> K(K-1) =
=y, V(1+2,) (1 Kn, = E2 52 + ) = K, (D)
_ K(K 1) 2
=Y (Vl + V1€ — V1Kn, — v1Keon, — 6 — P Yr]o + 0(80))
Neglecting the higher order of approximation, the bias
B(kp1) = (Vkp1 —Y) K1) ~
> K(K-1 X
=YE ()/1 + 7180 — V1Ko = V1Kegno —y1—5— n5 = 1570 — 1) (E)

Taking the expectations of (E), we get the (5.4) for i = 1, which proves theorem
(5.1)

The derivation of other estimators yxg; (i = 2 & 3) can be carried out in a similar

way

Theorem (5.2): The minimum mean square error of the proposed ratio regression type
estimators Ygpq up to the first order approximation is given by

. - T B%
MinMSE (Jig:) = Y2 [Cy — (A—)] (5.7)
For the optimum value K given by
Sy —BiS
K = Pxy°y ﬂl X
RS,

Proof: The MSE of y,,1 can be found up to the first order of approximation by

rewriting as follows:
MSE (3_’1(31) =Ekp1—Y)?

no+heo ViKeono — i3

I|><\

mo—1]

—, ¥
= Y’E [1 +v, (142 + K2 — 4Ke,n ) — 2y, (1 — Kegn, — KB, 502 —

KD o 2%
5 +,81_£0r’ )+:81?770

=V2E [y, — iKno — 11

2 [ 1+ 7 Y1+ f,C2 + fu(KCE = 4KpyyCCy)} — 274 ] "
= X X K(K 1) .
{1 - fn (prnyCy - Kﬁl ;CJ? + ﬁl ;pxnyCy - )} .B fncag
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Differentiate equation (F) with respect to K when y,equating to 1, we get

Sy, —BiS
K = Pxy°y Bl x
RS,
For optimum value of y; differentiating the equation(G) with respect to and

. B
equating to zero, we get yqpr = A—1
1

Substituting the optimum value of y4,,,; in equation (G), we get minimum MSE

. w2 B}
Min. MSE(yKl) =Y Cl -
Ay
we get the (5.7) for i = 1 that prove theorem (5.2)
The derivation of other estimators Typ; ;=2 & 3) can be drive on similar lines.
In general, we have

MSE (¥gpi) = ?Z(V%Ai - 271B; + ()



